
SFDX Intro
Making Salesforce development more accessible to more developers



ISV Partner Problems

• Tools that Developers can use without knowing Salesforce

• Developer Orgs that proliferate as developer teams change

• Source Control

• Must deploy over multiple client orgs and configurations



Customer Problems

• Tools that Advanced Admins can also work with

• Monitoring vendor work in progress

• Maintaining data security

• Strong UAT efforts

• Maintainging security of Intellectual Property

• Source Control / Metadata backup

• Must maintain uniform compliance and configuration



SFDX Solution

• Familiar developer tools like VS Code

• Support for Sandbox development for Customers

• Support for Scratch Org development for ISVs



SFDX Flexibility and Familiarity
with VS Code
IntelliJ
Welkins Suite



Customer Orgs are Not ISV Orgs

• Our apps and packages run like embedded systems

• Solutions may encapsulate their functionality

• Each part must work as part of the whole



Advantages of Sandboxes, a Holistic Approach

• Testing new development on the platform where it will live

• Collaboration with Admins and Devs

• Easy to freeze users and delete orgs

• Flexibility of Packages with dependencies and Packages without 
dependencies all defined in the org

• Easy to audit and monitor

• Works with existing code

• Supports our existing isSandbox code



Package-Based Development Includes Change 
Sets and Packages Together
• Un-deployed change sets are mutable, so the feature package can 

grow and change over time

• Package.xml defined via GUI 

• Familiar tools
with new 
SFDX features



More Awesome Options with Sandboxes

• Follows best practices regarding the software development life cycle. It’s compatible with 
the new features of Salesforce DX: projects, source-driven development commands.

• Encapsulates all the changes you are tracking between life cycle stages in a versioned 
artifact.

• Makes it easier for you to accommodate new feature requests. Simply add, update, and 
remove components in your package as defined in the GUI of your Sandbox or Prod org.

• Provides an improved audit history, so you can more easily track and understand the 
changes made to your production org.

• Organizes source. It’s much easier to know which components belong to which 
applications and features.

• Promotes iterative and modular development.

• Supports interdependencies.

• Supports continuous integration and continuous delivery because the packaging CLI 
commands enable each step in the deployment pipeline to be fully automated.



Multiple Repository Approach
with Packages

Base Classes: eg. MerakiUtil.cls, Data.cls, TriggerHandler

Support Sales
Marketing 

& Leads
Partner

QA Tools and Tests

Maintained as
one platform
with Sandboxes


